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1. Executive Summary
1.1 Purpose and Scope
This guide provides comprehensive patterns and best practices for designing and implementing enterprise data lakes using the Databricks Lakehouse architecture. It addresses the needs of both data engineers implementing solutions and architects designing scalable data platforms, covering table design, partitioning strategies, file management, and optimization techniques.
1.2 What is the Lakehouse Architecture?
The Lakehouse architecture represents the convergence of data warehouse and data lake paradigms, combining the reliability and performance of traditional data warehouses with the flexibility and cost-effectiveness of data lakes. Built on open standards like Delta Lake and Apache Parquet, the Lakehouse provides:
Single Source of Truth: Unified storage for all data types—structured, semi-structured, and unstructured
ACID Transactions: Database-level reliability on data lake storage
Schema Enforcement: Data quality guarantees without sacrificing flexibility
BI and ML Workloads: Support for both analytics and machine learning from the same data
Open Format: No vendor lock-in with open file formats and APIs
1.3 The Medallion Architecture
The Lakehouse typically implements a medallion architecture with three distinct layers:
┌─────────────────────────────────────────────────────────────────────────────┐
│                        MEDALLION ARCHITECTURE                                │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   ┌─────────────┐      ┌─────────────┐      ┌─────────────┐                │
│   │   BRONZE    │      │   SILVER    │      │    GOLD     │                │
│   │   (Raw)     │ ───▶ │  (Cleansed) │ ───▶ │  (Curated)  │                │
│   └─────────────┘      └─────────────┘      └─────────────┘                │
│                                                                              │
│   • Raw ingestion       • Deduplicated       • Business aggregates         │
│   • Schema-on-read      • Validated          • Dimensional models          │
│   • Full history        • Standardized       • Feature stores              │
│   • Minimal transform   • Enriched           • Reporting tables            │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
	Layer
	Purpose
	Data Characteristics
	Typical Users

	**Bronze**
	Raw data landing zone
	As-is from source, append-only
	Data engineers

	**Silver**
	Cleansed and conformed
	Validated, deduplicated, typed
	Data engineers, analysts

	**Gold**
	Business-ready data
	Aggregated, modeled, optimized
	Analysts, data scientists, applications



1.4 Target Audience
This guide serves:
Data Architects: Designing enterprise data platform architecture and standards
Data Engineers: Implementing ETL pipelines and data transformations
Platform Engineers: Managing Databricks infrastructure and optimizing performance
Analytics Engineers: Building data models for downstream consumption
2. Lakehouse Architecture Overview
2.1 Core Components
The Databricks Lakehouse consists of several integrated components that work together to provide a complete data platform:
┌─────────────────────────────────────────────────────────────────────────────┐
│                       LAKEHOUSE COMPONENT STACK                              │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │                      UNITY CATALOG                                   │  │
│   │         (Governance, Security, Lineage, Discovery)                   │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │                     COMPUTE LAYER                                    │  │
│   │   ┌──────────────┐  ┌──────────────┐  ┌──────────────┐             │  │
│   │   │   SQL        │  │   Spark      │  │   ML         │             │  │
│   │   │   Warehouses │  │   Clusters   │  │   Runtime    │             │  │
│   │   └──────────────┘  └──────────────┘  └──────────────┘             │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │                      DELTA LAKE                                      │  │
│   │         (ACID Transactions, Time Travel, Schema Evolution)           │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │                    CLOUD STORAGE                                     │  │
│   │      (AWS S3 / Azure ADLS / GCP GCS - Open Parquet Format)          │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
2.2 Design Principles
When designing a Lakehouse solution, adhere to these fundamental principles:
Data as a Product: Treat datasets as products with defined owners, SLAs, and quality guarantees
Open Standards: Use open file formats (Parquet) and APIs to avoid vendor lock-in
Separation of Compute and Storage: Enable independent scaling and cost optimization
Schema-on-Write for Quality: Enforce schemas at write time for downstream reliability
Incremental Processing: Prefer incremental over full loads for efficiency
Idempotent Operations: Design pipelines that can be safely re-run without side effects
3. Table Design Principles
3.1 Understanding Delta Lake Table Types
Databricks supports several table types, each suited for different use cases. Selecting the appropriate type is a foundational design decision that impacts manageability, performance, and data sharing capabilities.
	Table Type
	Description
	Use Case
	Key Characteristics

	**Managed Table**
	Databricks manages both metadata and data files
	Default for most internal tables
	Full lifecycle management, easy cleanup

	**External Table**
	Databricks manages metadata; data in external location
	Legacy data, cross-platform sharing
	Flexible storage location, manual cleanup

	**Streaming Table**
	Optimized for streaming workloads
	Real-time data ingestion
	Auto-optimized for append patterns

	**Materialized View**
	Pre-computed query results
	Dashboard acceleration
	Automatic refresh, query optimization



3.2 Table Creation Best Practices
Before creating tables, consider these design factors:
Naming Conventions
Use a consistent three-level namespace: catalog.schema.table
Schema names should reflect business domains (e.g., sales, finance, operations)
Table names should be descriptive: fact_orders, dim_customer, stg_raw_events
Column Design
Use specific data types (avoid STRING for numeric/date data)
Add meaningful comments to all columns
Define NOT NULL constraints where appropriate
Include audit columns for traceability
3.3 Standard Managed Table Pattern
This pattern represents a production-ready fact table with all recommended configurations:
-- Production-ready table with all best practices
CREATE TABLE IF NOT EXISTS gold.sales.fact_orders (
    -- Surrogate key for data warehouse patterns
    order_key BIGINT GENERATED ALWAYS AS IDENTITY,

    -- Business keys (source system identifiers)
    order_id STRING NOT NULL COMMENT 'Source system order identifier',
    order_number STRING COMMENT 'Human-readable order number',

    -- Foreign keys for dimensional relationships
    customer_key BIGINT COMMENT 'FK to dim_customer',
    product_key BIGINT COMMENT 'FK to dim_product',
    date_key INT COMMENT 'FK to dim_date (YYYYMMDD format)',
    store_key BIGINT COMMENT 'FK to dim_store',

    -- Measures (facts being recorded)
    quantity INT COMMENT 'Number of units ordered',
    unit_price DECIMAL(18,2) COMMENT 'Price per unit in USD',
    discount_amount DECIMAL(18,2) COMMENT 'Total discount applied',
    tax_amount DECIMAL(18,2) COMMENT 'Tax amount',
    total_amount DECIMAL(18,2) COMMENT 'Final order amount',

    -- Degenerate dimensions (descriptive attributes from fact)
    order_status STRING COMMENT 'Current order status',
    payment_method STRING COMMENT 'Payment method used',

    -- Audit columns for data lineage
    source_system STRING COMMENT 'Source system identifier',
    created_at TIMESTAMP DEFAULT current_timestamp() COMMENT 'Record creation timestamp',
    updated_at TIMESTAMP COMMENT 'Last update timestamp',
    _etl_timestamp TIMESTAMP COMMENT 'ETL processing timestamp'
)
USING DELTA
COMMENT 'Fact table containing all customer orders. Grain: one row per order line item.'
PARTITIONED BY (date_key)
TBLPROPERTIES (
    'delta.autoOptimize.optimizeWrite' = 'true',
    'delta.autoOptimize.autoCompact' = 'true',
    'delta.columnMapping.mode' = 'name',
    'delta.minReaderVersion' = '2',
    'delta.minWriterVersion' = '5',
    'delta.enableChangeDataFeed' = 'true'
);

-- Add constraints for documentation and potential optimization
ALTER TABLE gold.sales.fact_orders
ADD CONSTRAINT pk_order_key PRIMARY KEY (order_key) NOVALIDATE;

ALTER TABLE gold.sales.fact_orders
ADD CONSTRAINT fk_customer FOREIGN KEY (customer_key)
    REFERENCES gold.sales.dim_customer(customer_key) NOVALIDATE;
3.4 Liquid Clustering Pattern (Recommended for New Tables)
Liquid Clustering is the modern approach that replaces traditional partitioning combined with Z-ORDER. It provides automatic, adaptive data organization with significantly reduced maintenance overhead.
When to Use Liquid Clustering:
New tables where you have flexibility in design
Tables with multi-dimensional query patterns
Tables where clustering columns may change over time
When you want to minimize operational maintenance
-- Modern approach replacing partitioning + Z-ORDER
CREATE TABLE gold.sales.fact_transactions (
    transaction_id STRING,
    customer_id STRING,
    product_id STRING,
    transaction_date DATE,
    amount DECIMAL(18,2),
    channel STRING
)
USING DELTA
CLUSTER BY (customer_id, transaction_date)  -- Liquid clustering
TBLPROPERTIES (
    'delta.enableDeletionVectors' = 'true',
    'delta.autoOptimize.optimizeWrite' = 'true'
);

-- Liquid clustering automatically optimizes during writes
-- No need for manual OPTIMIZE ZORDER commands
3.5 External Table Pattern
External tables are appropriate when data must remain in a specific location or when sharing data across multiple platforms:
-- Create external location first (Unity Catalog)
CREATE EXTERNAL LOCATION IF NOT EXISTS legacy_data
URL 's3://company-legacy-data/warehouse/'
WITH (STORAGE CREDENTIAL legacy_credential);

-- Create external table pointing to existing data
CREATE EXTERNAL TABLE bronze.legacy.transactions (
    transaction_id STRING,
    transaction_date STRING,
    amount STRING,
    raw_json STRING
)
USING DELTA
LOCATION 's3://company-legacy-data/warehouse/transactions/'
TBLPROPERTIES (
    'delta.columnMapping.mode' = 'name'
);
4. Partitioning Strategy
4.1 Understanding Partitioning
Partitioning is a technique that divides table data into separate directories based on column values. When queries filter on partition columns, Spark can skip reading irrelevant partitions entirely, dramatically improving performance for large datasets.
However, partitioning comes with trade-offs:
Benefits:
Partition pruning eliminates unnecessary I/O
Enables efficient data lifecycle management
Supports compliance requirements (e.g., GDPR deletion)
Risks:
Over-partitioning creates small files
Under-partitioning leads to full table scans
Wrong partition column wastes the optimization
4.2 When to Partition
The decision to partition should be based on data volume and query patterns:
	Data Size
	Recommendation
	Rationale

	< 1 TB
	No partitioning needed
	Overhead exceeds benefit

	1-10 TB
	Consider partitioning
	Evaluate query patterns first

	> 10 TB
	Partitioning recommended
	Essential for query performance



4.3 Partition Column Selection Framework
Selecting the right partition column is critical. Use this decision framework:
def recommend_partition_strategy(table_stats):
    """
    Recommend partitioning strategy based on table characteristics.
    This framework helps architects make informed partitioning decisions.
    """
    recommendations = []

    # Rule 1: Partition by date for time-series data
    # Date partitioning is ideal when queries consistently filter by time ranges
    if table_stats.has_date_column and table_stats.query_patterns.filter_by_date:
        recommendations.append({
            "column": table_stats.date_column,
            "granularity": determine_date_granularity(table_stats),
            "reason": "Time-series data with date filters"
        })

    # Rule 2: High cardinality columns are bad partitions
    # Each unique value creates a separate directory
    for col in table_stats.candidate_columns:
        cardinality = table_stats.cardinality[col]
        if cardinality > 10000:
            recommendations.append({
                "column": col,
                "action": "AVOID",
                "reason": f"High cardinality ({cardinality}) causes small files"
            })

    # Rule 3: Low cardinality with even distribution is good
    # Provides meaningful pruning without excessive directories
    for col in table_stats.candidate_columns:
        cardinality = table_stats.cardinality[col]
        if 10 <= cardinality <= 1000 and table_stats.distribution[col].is_even:
            recommendations.append({
                "column": col,
                "action": "CONSIDER",
                "reason": f"Low cardinality ({cardinality}) with even distribution"
            })

    return recommendations


def determine_date_granularity(table_stats):
    """
    Determine optimal date partition granularity based on data volume.
    The goal is partitions between 100MB and 1GB each.
    """
    daily_volume = table_stats.avg_daily_records

    if daily_volume > 1_000_000:
        return "day"    # PARTITION BY (year, month, day)
    elif daily_volume > 100_000:
        return "month"  # PARTITION BY (year, month)
    else:
        return "year"   # PARTITION BY (year)
4.4 Partition Examples
Daily Partitioning for High-Volume Data
For tables receiving millions of records daily (clickstream, IoT, logs):
-- Daily partitioning for high-volume transaction data
-- Uses generated column to ensure consistent partition values
CREATE TABLE silver.events.clickstream (
    event_id STRING,
    user_id STRING,
    event_type STRING,
    event_timestamp TIMESTAMP,
    properties MAP<STRING, STRING>,
    -- Generated column automatically derives partition value
    event_date DATE GENERATED ALWAYS AS (CAST(event_timestamp AS DATE))
)
USING DELTA
PARTITIONED BY (event_date)
TBLPROPERTIES (
    'delta.autoOptimize.optimizeWrite' = 'true',
    'delta.autoOptimize.autoCompact' = 'true'
);
Monthly Partitioning for Medium-Volume Data
For tables with moderate data volumes where monthly granularity suffices:
-- Monthly partitioning for medium-volume financial data
CREATE TABLE silver.finance.journal_entries (
    entry_id STRING,
    account_code STRING,
    amount DECIMAL(18,2),
    entry_date DATE,
    fiscal_year INT GENERATED ALWAYS AS (YEAR(entry_date)),
    fiscal_month INT GENERATED ALWAYS AS (MONTH(entry_date))
)
USING DELTA
PARTITIONED BY (fiscal_year, fiscal_month);
Composite Partitioning for Multi-Dimensional Queries
When queries filter on multiple dimensions consistently:
-- Composite partitioning for regional sales analysis
CREATE TABLE gold.analytics.sales_summary (
    date_key INT,
    region STRING,
    product_category STRING,
    total_sales DECIMAL(18,2),
    total_quantity INT
)
USING DELTA
PARTITIONED BY (region, date_key);
5. File Size Optimization
5.1 Why File Size Matters
File size directly impacts query performance, storage costs, and cluster resource utilization. Both extremes—too many small files or too few large files—create problems:
Small Files (< 32 MB):
Increased metadata overhead in transaction log
More tasks than necessary, overwhelming the driver
Higher cloud API costs (per-request pricing)
Poor compression ratios
Large Files (> 1 GB):
Reduced parallelism (fewer tasks)
Memory pressure on executors
Less effective data skipping
Longer retry times on failure
5.2 Optimal File Sizes by Workload
	Workload
	Optimal File Size
	Rationale

	**Batch ETL**
	128 MB - 256 MB
	Balance between parallelism and overhead

	**Interactive Queries**
	32 MB - 128 MB
	Faster pruning, lower latency

	**Streaming**
	16 MB - 64 MB
	Frequent commits, smaller batches



5.3 Auto Optimization Configuration
Auto-optimization features reduce manual maintenance by automatically managing file sizes during write operations.
Optimize Write: Coalesces small partitions into larger files during write operations, preventing the small file problem at the source.
Auto Compact: Automatically triggers compaction after write operations when small files accumulate.
-- Enable auto-optimization at table level
ALTER TABLE gold.sales.fact_orders SET TBLPROPERTIES (
    'delta.autoOptimize.optimizeWrite' = 'true',
    'delta.autoOptimize.autoCompact' = 'true',
    'delta.targetFileSize' = '134217728'  -- 128MB in bytes
);

-- Enable at session level for ad-hoc writes
SET spark.databricks.delta.optimizeWrite.enabled = true;
SET spark.databricks.delta.autoCompact.enabled = true;
5.4 Manual Optimization
For existing tables with accumulated small files, manual optimization is required:
-- Basic optimization compacts small files into larger ones
OPTIMIZE gold.sales.fact_orders;

-- Optimization with Z-ORDER for non-Liquid Clustering tables
-- Colocates related data for efficient data skipping
OPTIMIZE gold.sales.fact_orders
ZORDER BY (customer_key, product_key);

-- Optimize specific partitions to reduce processing time
-- Essential for large tables where full optimization is expensive
OPTIMIZE gold.sales.fact_orders
WHERE date_key >= 20250101 AND date_key < 20250201;

-- Check optimization results
DESCRIBE HISTORY gold.sales.fact_orders;
5.5 VACUUM for Storage Reclamation
VACUUM removes files that are no longer referenced in the transaction log, reclaiming storage space:
-- Remove old file versions (default 7-day retention)
VACUUM gold.sales.fact_orders;

-- Custom retention period
VACUUM gold.sales.fact_orders RETAIN 168 HOURS;  -- 7 days

-- Dry run to see what would be deleted
VACUUM gold.sales.fact_orders DRY RUN;
> Warning: VACUUM removes time travel capability for versions older than the retention period. Align retention with compliance requirements.
-- Only use shorter retention if absolutely necessary
SET spark.databricks.delta.retentionDurationCheck.enabled = false;
VACUUM gold.sales.fact_orders RETAIN 24 HOURS;
6. Schema Management
6.1 Schema Evolution Strategy
Schema evolution is inevitable in production systems as business requirements change. Delta Lake supports multiple evolution patterns while maintaining backward compatibility with existing data.
Safe Evolution Operations:
Adding new columns
Widening numeric types (INT → BIGINT)
Renaming columns (with column mapping)
Dropping columns (with column mapping)
Risky Operations (Require Careful Planning):
Narrowing types (BIGINT → INT)
Changing column nullability
Modifying partition columns
6.2 Automatic Schema Evolution
For pipelines where source schema changes are expected and acceptable, enable automatic schema evolution:
# Enable schema evolution for streaming writes
# New columns from source are automatically added to target
(streaming_df.writeStream
    .format("delta")
    .option("checkpointLocation", checkpoint_path)
    .option("mergeSchema", "true")  # Allow schema evolution
    .toTable("silver.events.raw_events")
)

# Enable for batch writes
(batch_df.write
    .format("delta")
    .mode("append")
    .option("mergeSchema", "true")
    .saveAsTable("silver.events.raw_events")
)
6.3 Column Mapping
Column mapping decouples logical column names from physical storage, enabling rename and drop operations without rewriting data:
-- Enable column mapping for existing table
ALTER TABLE silver.customers.profiles SET TBLPROPERTIES (
    'delta.columnMapping.mode' = 'name',
    'delta.minReaderVersion' = '2',
    'delta.minWriterVersion' = '5'
);

-- Now you can rename columns without data rewrite
ALTER TABLE silver.customers.profiles
RENAME COLUMN old_name TO new_name;

-- And drop columns logically
ALTER TABLE silver.customers.profiles
DROP COLUMN deprecated_column;
6.4 Type Evolution Patterns
Understanding safe versus unsafe type changes prevents data loss and pipeline failures:
# Safe type evolution patterns
type_evolution_rules = {
    "safe": [
        ("INT", "BIGINT"),           # Widening numeric
        ("FLOAT", "DOUBLE"),         # Widening precision
        ("DECIMAL(p1,s)", "DECIMAL(p2,s)"),  # where p2 > p1
        ("STRING", "STRING"),        # No change needed
    ],
    "unsafe": [
        ("BIGINT", "INT"),           # Potential data loss
        ("DOUBLE", "FLOAT"),         # Precision loss
        ("STRING", "INT"),           # Parse errors
    ]
}


def evolve_column_type(table_name, column_name, new_type):
    """
    Safely evolve column type using CTAS pattern.
    Use this for unsafe type changes that cannot be done in-place.
    """
    # Create new table with evolved schema
    spark.sql(f"""
        CREATE OR REPLACE TABLE {table_name}_new AS
        SELECT
            *,
            CAST({column_name} AS {new_type}) AS {column_name}_new
        FROM {table_name}
    """)

    # Drop old column, rename new
    spark.sql(f"ALTER TABLE {table_name}_new DROP COLUMN {column_name}")
    spark.sql(f"ALTER TABLE {table_name}_new RENAME COLUMN {column_name}_new TO {column_name}")

    # Swap tables atomically
    spark.sql(f"ALTER TABLE {table_name} RENAME TO {table_name}_backup")
    spark.sql(f"ALTER TABLE {table_name}_new RENAME TO {table_name}")
7. Data Ingestion Patterns
7.1 Ingestion Pattern Selection
Choosing the right ingestion pattern depends on source characteristics, latency requirements, and data volumes:
	Pattern
	Use Case
	Latency
	Complexity

	**Auto Loader**
	Cloud file sources
	Minutes
	Low

	**COPY INTO**
	Batch file loads
	Hours
	Very Low

	**Kafka Streaming**
	Real-time events
	Seconds
	Medium

	**JDBC/Connectors**
	Database sources
	Varies
	Medium



7.2 Auto Loader (Recommended for File Sources)
Auto Loader is the recommended approach for ingesting files from cloud storage. It efficiently tracks which files have been processed, scales to millions of files, and supports schema inference with evolution.
Key Features:
Automatic file discovery and tracking
Schema inference with evolution support
Exactly-once processing guarantees
Scales to millions of files per load
def create_auto_loader_pipeline(source_path, target_table, schema_hints=None):
    """
    Create a production-grade Auto Loader pipeline.
    This pattern handles schema evolution, bad records, and provides
    complete data lineage through metadata columns.
    """
    checkpoint_path = f"/checkpoints/{target_table.replace('.', '/')}"

    reader = (spark.readStream
        .format("cloudFiles")
        .option("cloudFiles.format", "json")
        .option("cloudFiles.schemaLocation", f"{checkpoint_path}/schema")

        # Schema inference configuration
        .option("cloudFiles.inferColumnTypes", "true")
        .option("cloudFiles.schemaEvolutionMode", "addNewColumns")

        # Performance tuning
        .option("cloudFiles.maxFilesPerTrigger", "1000")
        .option("cloudFiles.maxBytesPerTrigger", "10g")

        # Use notifications for efficiency (S3/ADLS)
        .option("cloudFiles.useNotifications", "true")

        # Rescue bad records instead of failing
        .option("cloudFiles.rescuedDataColumn", "_rescued_data")
    )

    if schema_hints:
        reader = reader.option("cloudFiles.schemaHints", schema_hints)

    # Add metadata columns for data lineage
    df = (reader
        .load(source_path)
        .withColumn("_ingestion_timestamp", F.current_timestamp())
        .withColumn("_source_file", F.input_file_name())
    )

    # Write to target with exactly-once semantics
    query = (df.writeStream
        .format("delta")
        .outputMode("append")
        .option("checkpointLocation", f"{checkpoint_path}/data")
        .option("mergeSchema", "true")
        .trigger(availableNow=True)  # Process all available files, then stop
        .toTable(target_table)
    )

    return query
7.3 COPY INTO (Batch File Ingestion)
COPY INTO provides a simpler alternative for batch file ingestion when streaming is not required:
-- Simple batch file ingestion
-- COPY INTO automatically tracks processed files
COPY INTO bronze.raw.transactions
FROM 's3://landing-zone/transactions/'
FILEFORMAT = JSON
FORMAT_OPTIONS (
    'inferSchema' = 'true',
    'mergeSchema' = 'true'
)
COPY_OPTIONS (
    'mergeSchema' = 'true',
    'force' = 'false'  -- Skip already loaded files
);

-- COPY INTO with inline transformations
COPY INTO bronze.raw.customers
FROM (
    SELECT
        _c0 AS customer_id,
        _c1 AS customer_name,
        _c2 AS email,
        current_timestamp() AS _ingestion_time
    FROM 's3://landing-zone/customers/'
)
FILEFORMAT = CSV
FORMAT_OPTIONS (
    'header' = 'false',
    'delimiter' = '|'
);
7.4 Kafka Streaming Ingestion
For real-time event processing, Kafka streaming provides low-latency ingestion with exactly-once semantics:
def create_kafka_pipeline(topic, target_table, schema):
    """
    Create a Kafka to Delta Lake streaming pipeline.
    This pattern ensures exactly-once processing and handles
    schema evolution for streaming sources.
    """
    checkpoint_path = f"/checkpoints/{target_table.replace('.', '/')}"

    # Read from Kafka with security configuration
    kafka_df = (spark.readStream
        .format("kafka")
        .option("kafka.bootstrap.servers", kafka_bootstrap_servers)
        .option("subscribe", topic)
        .option("startingOffsets", "earliest")
        .option("maxOffsetsPerTrigger", "100000")

        # Security configuration
        .option("kafka.security.protocol", "SASL_SSL")
        .option("kafka.sasl.mechanism", "PLAIN")
        .option("kafka.sasl.jaas.config",
                f'kafkashaded.org.apache.kafka.common.security.plain.PlainLoginModule '
                f'required username="{api_key}" password="{api_secret}";')
        .load()
    )

    # Parse JSON payload and add metadata
    parsed_df = (kafka_df
        .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)", "timestamp")
        .select(
            F.col("key"),
            F.from_json(F.col("value"), schema).alias("data"),
            F.col("timestamp").alias("kafka_timestamp")
        )
        .select("key", "data.*", "kafka_timestamp")
        .withColumn("_processing_time", F.current_timestamp())
    )

    # Write to Delta with exactly-once semantics
    query = (parsed_df.writeStream
        .format("delta")
        .outputMode("append")
        .option("checkpointLocation", checkpoint_path)
        .trigger(processingTime="30 seconds")
        .toTable(target_table)
    )

    return query
8. Data Transformation Patterns
8.1 Bronze to Silver Transformation
The Bronze to Silver transformation cleanses, validates, and standardizes raw data. This layer ensures data quality for all downstream consumers.
Key Transformations:
Deduplication of records
Data type casting and validation
Null handling and default values
Schema standardization
Business rule application
def bronze_to_silver_transform(bronze_table, silver_table, transformations):
    """
    Standard Bronze to Silver transformation pattern.
    This function applies cleansing rules, deduplication, and
    maintains incremental processing through streaming MERGE.
    """
    # Read bronze data as stream for incremental processing
    bronze_df = spark.readStream.table(bronze_table)

    silver_df = bronze_df

    # 1. Deduplicate based on business keys
    if transformations.get("dedupe_columns"):
        silver_df = silver_df.dropDuplicates(transformations["dedupe_columns"])

    # 2. Apply data cleansing rules
    for col_name, rules in transformations.get("cleansing_rules", {}).items():
        for rule in rules:
            if rule["type"] == "trim":
                silver_df = silver_df.withColumn(col_name, F.trim(F.col(col_name)))
            elif rule["type"] == "upper":
                silver_df = silver_df.withColumn(col_name, F.upper(F.col(col_name)))
            elif rule["type"] == "null_check":
                silver_df = silver_df.filter(F.col(col_name).isNotNull())
            elif rule["type"] == "regex_filter":
                silver_df = silver_df.filter(F.col(col_name).rlike(rule["pattern"]))

    # 3. Cast to proper data types
    for col_name, target_type in transformations.get("type_casts", {}).items():
        silver_df = silver_df.withColumn(col_name, F.col(col_name).cast(target_type))

    # 4. Add silver layer metadata
    silver_df = (silver_df
        .withColumn("_silver_timestamp", F.current_timestamp())
        .withColumn("_bronze_source", F.lit(bronze_table))
    )

    # 5. Write to silver with MERGE for upsert capability
    def merge_to_silver(batch_df, batch_id):
        merge_keys = transformations.get("merge_keys", [])
        merge_condition = " AND ".join([f"target.{k} = source.{k}" for k in merge_keys])

        batch_df.createOrReplaceTempView("source_batch")

        spark.sql(f"""
            MERGE INTO {silver_table} AS target
            USING source_batch AS source
            ON {merge_condition}
            WHEN MATCHED THEN UPDATE SET *
            WHEN NOT MATCHED THEN INSERT *
        """)

    query = (silver_df.writeStream
        .foreachBatch(merge_to_silver)
        .option("checkpointLocation", f"/checkpoints/{silver_table}/bronze_to_silver")
        .trigger(availableNow=True)
        .start()
    )

    return query
8.2 Silver to Gold Transformation
The Silver to Gold transformation creates business-ready datasets, typically following dimensional modeling patterns for analytics consumption.
Common Gold Layer Patterns:
Fact tables with measures and foreign keys
Dimension tables with SCD Type 1 or 2
Aggregated summary tables
Feature tables for ML
def create_dimensional_model(silver_sources, gold_table, model_config):
    """
    Create dimensional model (fact/dimension) from silver tables.
    This pattern supports both fact tables with dimension lookups
    and dimension tables with SCD handling.
    """
    if model_config["type"] == "fact":
        return create_fact_table(silver_sources, gold_table, model_config)
    elif model_config["type"] == "dimension":
        return create_dimension_table(silver_sources, gold_table, model_config)


def create_fact_table(silver_sources, gold_table, config):
    """
    Create fact table with proper grain and measures.
    Performs dimension key lookups for star schema design.
    """
    # Start with primary source
    fact_df = spark.table(silver_sources["primary"])

    # Join dimension lookups to get surrogate keys
    for dim_name, dim_config in config.get("dimension_lookups", {}).items():
        dim_df = spark.table(dim_config["source"]).select(
            dim_config["join_key"],
            F.col(dim_config["surrogate_key"]).alias(f"{dim_name}_key")
        )

        fact_df = fact_df.join(
            dim_df,
            fact_df[dim_config["fact_key"]] == dim_df[dim_config["join_key"]],
            "left"
        )

    # Select final columns for fact table
    fact_df = fact_df.select(
        *[F.col(c) for c in config["dimension_keys"]],
        *[F.col(c) for c in config["measures"]],
        *[F.col(c) for c in config.get("degenerate_dimensions", [])],
        F.current_timestamp().alias("_gold_timestamp")
    )

    # Write to gold with appropriate optimizations
    (fact_df.write
        .format("delta")
        .mode("overwrite")
        .option("overwriteSchema", "true")
        .partitionBy(config.get("partition_by", []))
        .saveAsTable(gold_table)
    )

    # Apply clustering or Z-ordering
    if config.get("cluster_by"):
        spark.sql(f"ALTER TABLE {gold_table} CLUSTER BY ({', '.join(config['cluster_by'])})")
    elif config.get("zorder_by"):
        spark.sql(f"OPTIMIZE {gold_table} ZORDER BY ({', '.join(config['zorder_by'])})")

    return spark.table(gold_table)
9. Change Data Capture (CDC)
9.1 Understanding CDC in the Lakehouse
Change Data Capture enables tracking row-level changes in Delta tables, supporting incremental processing patterns that are essential for efficient data pipelines. CDC provides visibility into exactly what changed, when it changed, and what the previous values were.
CDC Use Cases:
Incremental ETL pipelines
Real-time data synchronization
Audit trail maintenance
Event sourcing architectures
9.2 Enable Change Data Feed
-- Enable CDF on existing table
ALTER TABLE silver.customers.master SET TBLPROPERTIES (
    'delta.enableChangeDataFeed' = 'true'
);

-- Create table with CDF enabled from the start
CREATE TABLE silver.orders.details (
    order_id STRING,
    product_id STRING,
    quantity INT,
    price DECIMAL(18,2)
)
USING DELTA
TBLPROPERTIES (
    'delta.enableChangeDataFeed' = 'true'
);
9.3 Reading Change Data
CDF provides three metadata columns that describe each change:
	Column
	Description
	Values

	`_change_type`
	Type of change
	insert, update_preimage, update_postimage, delete

	`_commit_version`
	Transaction version
	Long integer

	`_commit_timestamp`
	Commit timestamp
	Timestamp



# Read changes from specific version range
changes_df = (spark.read
    .format("delta")
    .option("readChangeFeed", "true")
    .option("startingVersion", 10)
    .option("endingVersion", 20)
    .table("silver.customers.master")
)

# Read changes from timestamp
changes_df = (spark.read
    .format("delta")
    .option("readChangeFeed", "true")
    .option("startingTimestamp", "2025-01-01 00:00:00")
    .table("silver.customers.master")
)

# Streaming read for continuous processing
changes_stream = (spark.readStream
    .format("delta")
    .option("readChangeFeed", "true")
    .option("startingVersion", "latest")
    .table("silver.customers.master")
)
9.4 CDC Processing Pattern
This pattern demonstrates how to apply CDC changes to a downstream target table:
def process_cdc_changes(source_table, target_table):
    """
    Process CDC changes and apply to target table.
    This pattern handles inserts, updates, and deletes atomically.
    """
    # Read changes as a stream
    changes = (spark.readStream
        .format("delta")
        .option("readChangeFeed", "true")
        .option("startingVersion", "latest")
        .table(source_table)
    )

    def apply_changes(batch_df, batch_id):
        # Separate changes by type
        inserts = batch_df.filter("_change_type = 'insert'")
        updates = batch_df.filter("_change_type = 'update_postimage'")
        deletes = batch_df.filter("_change_type = 'delete'")

        # Get data columns (exclude CDC metadata)
        data_columns = [c for c in batch_df.columns if not c.startswith("_")]

        # Apply inserts and updates via MERGE
        if inserts.count() > 0 or updates.count() > 0:
            upserts = inserts.union(updates).select(data_columns)
            upserts.createOrReplaceTempView("upserts")

            spark.sql(f"""
                MERGE INTO {target_table} target
                USING upserts source
                ON target.id = source.id
                WHEN MATCHED THEN UPDATE SET *
                WHEN NOT MATCHED THEN INSERT *
            """)

        # Apply deletes
        if deletes.count() > 0:
            delete_ids = [row.id for row in deletes.select("id").collect()]
            spark.sql(f"""
                DELETE FROM {target_table}
                WHERE id IN ({','.join([f"'{id}'" for id in delete_ids])})
            """)

    query = (changes.writeStream
        .foreachBatch(apply_changes)
        .option("checkpointLocation", f"/checkpoints/{target_table}/cdc")
        .trigger(processingTime="1 minute")
        .start()
    )

    return query
10. Time Travel and Versioning
10.1 Time Travel Capabilities
Delta Lake maintains a complete history of all changes, enabling queries against any previous state of the table. This capability supports audit requirements, debugging, and data recovery scenarios.
10.2 Query Historical Data
-- Query by version number
SELECT * FROM gold.sales.fact_orders VERSION AS OF 10;

-- Query by timestamp
SELECT * FROM gold.sales.fact_orders
TIMESTAMP AS OF '2025-01-20 10:00:00';

-- Query relative to current time
SELECT * FROM gold.sales.fact_orders
TIMESTAMP AS OF current_timestamp() - INTERVAL 2 HOURS;

-- View table history
DESCRIBE HISTORY gold.sales.fact_orders;

-- View recent history only
DESCRIBE HISTORY gold.sales.fact_orders LIMIT 10;
10.3 Restore and Clone Operations
-- Restore to specific version (creates new version, preserves history)
RESTORE TABLE gold.sales.fact_orders TO VERSION AS OF 10;

-- Restore to timestamp
RESTORE TABLE gold.sales.fact_orders
TO TIMESTAMP AS OF '2025-01-20 10:00:00';

-- Shallow clone for testing (shares data files)
CREATE TABLE gold.sales.fact_orders_test
SHALLOW CLONE gold.sales.fact_orders;

-- Deep clone for backup (full independent copy)
CREATE TABLE gold.sales.fact_orders_backup
DEEP CLONE gold.sales.fact_orders;

-- Clone specific version for debugging
CREATE TABLE gold.sales.fact_orders_v10
SHALLOW CLONE gold.sales.fact_orders VERSION AS OF 10;
11. Performance Best Practices
11.1 Query Optimization Checklist
Use this checklist when designing tables and queries for optimal performance:
[ ] Use Liquid Clustering for new tables instead of partitioning + Z-ORDER
[ ] Enable Predictive I/O for automatic file skipping
[ ] Use column pruning - SELECT only needed columns
[ ] Apply partition filters early in queries
[ ] Leverage Photon for compute-intensive operations
[ ] Use broadcast joins for small dimension tables
[ ] Enable AQE (Adaptive Query Execution)
[ ] Collect statistics with ANALYZE TABLE
11.2 Write Optimization Checklist
[ ] Enable Auto Optimize for automatic file compaction
[ ] Batch small writes to avoid many small files
[ ] Use MERGE instead of DELETE + INSERT
[ ] Enable Deletion Vectors for faster deletes/updates
[ ] Run OPTIMIZE regularly for query performance
[ ] Schedule VACUUM to reclaim storage
11.3 Statistics Collection
Statistics enable the query optimizer to make intelligent execution plan decisions:
-- Collect basic table statistics
ANALYZE TABLE gold.sales.fact_orders COMPUTE STATISTICS;

-- Collect column-level statistics for better join optimization
ANALYZE TABLE gold.sales.fact_orders
COMPUTE STATISTICS FOR ALL COLUMNS;

-- Collect statistics for specific high-cardinality columns
ANALYZE TABLE gold.sales.fact_orders
COMPUTE STATISTICS FOR COLUMNS customer_key, product_key, total_amount;

-- View collected statistics
DESCRIBE EXTENDED gold.sales.fact_orders;
12. Implementation Templates
12.1 Bronze Table Template
Bronze tables capture raw data exactly as received from source systems:
CREATE TABLE IF NOT EXISTS bronze.{source_system}.{entity_name} (
    -- Raw payload preservation
    raw_data STRING COMMENT 'Raw JSON/CSV payload',

    -- Metadata for lineage
    _source_file STRING COMMENT 'Source file path',
    _ingestion_timestamp TIMESTAMP COMMENT 'Ingestion time',
    _batch_id STRING COMMENT 'Batch identifier'
)
USING DELTA
PARTITIONED BY (DATE(_ingestion_timestamp))
TBLPROPERTIES (
    'delta.autoOptimize.optimizeWrite' = 'true',
    'delta.autoOptimize.autoCompact' = 'true',
    'delta.logRetentionDuration' = 'interval 30 days'
);
12.2 Silver Table Template
Silver tables contain cleansed, validated, and typed data:
CREATE TABLE IF NOT EXISTS silver.{domain}.{entity_name} (
    -- Business key
    {entity}_id STRING NOT NULL,

    -- Typed attributes
    -- ... (domain-specific columns)

    -- Metadata for lineage
    _source_system STRING,
    _bronze_timestamp TIMESTAMP,
    _silver_timestamp TIMESTAMP,
    _is_valid BOOLEAN DEFAULT true
)
USING DELTA
CLUSTER BY ({primary_key}, {common_filter_column})
TBLPROPERTIES (
    'delta.autoOptimize.optimizeWrite' = 'true',
    'delta.enableChangeDataFeed' = 'true',
    'delta.columnMapping.mode' = 'name'
);
12.3 Gold Table Template
Gold tables are optimized for business consumption:
CREATE TABLE IF NOT EXISTS gold.{domain}.{table_type}_{entity_name} (
    -- Surrogate key
    {entity}_key BIGINT GENERATED ALWAYS AS IDENTITY,

    -- Business key
    {entity}_id STRING NOT NULL,

    -- Dimension keys (for facts)
    -- ... (FK columns)

    -- Attributes/Measures
    -- ... (domain-specific columns)

    -- SCD2 columns (for dimensions)
    _effective_date TIMESTAMP,
    _end_date TIMESTAMP,
    _is_current BOOLEAN,

    -- Metadata
    _gold_timestamp TIMESTAMP
)
USING DELTA
CLUSTER BY ({clustering_columns})
TBLPROPERTIES (
    'delta.autoOptimize.optimizeWrite' = 'true',
    'delta.enableChangeDataFeed' = 'true'
);
13. Governance and Compliance
13.1 Data Classification
Implement data classification to ensure appropriate handling of sensitive data:
	Classification
	Description
	Access Control
	Retention

	**Public**
	Non-sensitive business data
	All authenticated users
	Standard

	**Internal**
	Business-sensitive data
	Department-level access
	Standard

	**Confidential**
	PII, financial data
	Role-based access
	Compliance-driven

	**Restricted**
	Highly sensitive (PCI, PHI)
	Named individuals only
	Audit-required



13.2 Data Lineage
Maintain comprehensive lineage through:
Metadata columns in all tables (_source_system, _etl_timestamp)
Unity Catalog lineage tracking
Pipeline documentation and tagging
13.3 Retention Policies
Define retention policies aligned with business and compliance requirements:
-- Set table-level retention properties
ALTER TABLE silver.customers.profiles SET TBLPROPERTIES (
    'delta.logRetentionDuration' = 'interval 90 days',
    'delta.deletedFileRetentionDuration' = 'interval 30 days'
);
14. Cost Optimization
14.1 Storage Optimization
	Strategy
	Implementation
	Savings Potential

	VACUUM regularly
	Weekly scheduled job
	10-30%

	Optimize file sizes
	Auto-optimize enabled
	5-15%

	Use appropriate compression
	ZSTD for cold data
	20-40%

	Lifecycle policies
	Move old data to cold storage
	30-50%



14.2 Compute Optimization
	Strategy
	Implementation
	Savings Potential

	Right-size clusters
	Monitor utilization metrics
	20-40%

	Use spot instances
	For fault-tolerant workloads
	50-70%

	Auto-termination
	Set idle timeout policies
	10-20%

	Photon acceleration
	Enable for SQL workloads
	Faster, not cheaper



14.3 Query Optimization
	Strategy
	Implementation
	Impact

	Column pruning
	SELECT specific columns
	Reduce I/O

	Partition pruning
	Filter on partition columns
	Reduce scan

	Predicate pushdown
	Filter early in query
	Reduce data movement

	Caching
	Cache frequently accessed data
	Reduce recomputation
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